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A foundational assumption in economics is that people are
rational: they choose optimal plans of action given their predic-
tions about future states of the world. In games of strategy this
means that each player’s strategy should be optimal given his or
her prediction of the opponents’ strategies. We demonstrate that
there is an inherent tension between rationality and prediction
when players are uncertain about their opponents’ payoff func-
tions. Specifically, there are games in which it is impossible for
perfectly rational players to learn to predict the future behavior of
their opponents (even approximately) no matter what learning
rule they use. The reason is that in trying to predict the next-period
behavior of an opponent, a rational player must take an action this
period that the opponent can observe. This observation may cause
the opponent to alter his next-period behavior, thus invalidating
the first player’s prediction. The resulting feedback loop has the
property that, a positive fraction of the time, the predicted prob-
ability of some action next period differs substantially from the
actual probability with which the action is going to occur. We
conclude that there are strategic situations in which it is impossible
in principle for perfectly rational agents to learn to predict the
future behavior of other perfectly rational agents based solely on
their observed actions.

Rationality vs. Predictability

Economists often assume that people are rational: they max-
imize their expected payoffs given their beliefs about future

states of the world. This hypothesis plays a crucial role in game
theory, where each player is assumed to choose an optimal
strategy given his belief about the strategies of his opponents. In
this setting, a belief amounts to a forecast or prediction of the
opponents’ future behavior, that is, of the probability with which
the opponents will take various actions. The prediction is good
if the forecasted probabilities are close to the actual probabili-
ties. Together prediction and rationality justify the central
solution concept of the theory. Namely, if each player correctly
predicts the opponents’ strategies and if each chooses an optimal
strategy given his prediction, then the strategies form a Nash
equilibrium of the repeated game. But under what circumstances
will rational players actually learn to predict the behavior of
others starting from out-of-equilibrium conditions?

In this article we show that there are very simple games of
incomplete information such that players almost never learn to
predict their opponents’ behavior even approximately, and they
almost never come close to playing a Nash equilibrium. This
impossibility result and its proof builds on the existing literature
on learning in repeated games (1–8); for other critiques of
Bayesian learning in economic environments see refs. 9–11 and
19. The present contribution demonstrates the incompatibility
between rationality and prediction without placing any restric-
tions on the players’ prior beliefs, their learning rules, or the
degree to which they are forward-looking.

An Example. We begin by illustrating the problem in a concrete
case. Consider two individuals, A and B, who are playing the
game of matching pennies. Simultaneously each turns a penny

face up or face down. If the pennies match (both are heads or
both are tails), then B buys a prize for A; if they do not match,
A buys a prize for B. Assume first that the prize is one dollar and
that the utility of both players is linear in money. Then the game
has a unique Nash equilibrium in which each player randomizes
by choosing heads (H) and tails (T) with equal probability. If
both adopt this strategy, then each is optimizing given the
strategy of the other. Moreover, although neither can predict the
realized action of the opponent in any given period, each can
predict his strategy, namely, the probabilities with which the
actions will be taken. In this case no tension exists between
rationality and prediction because the game has a unique
equilibrium, and the players know what it is.

Now change the situation by assuming that if both players
choose H, then B buys an ice cream cone for A, whereas if both
choose T then B buys A a milk shake. Similarly, if A chooses H
and B chooses T then A buys B a coke, whereas if the opposite
occurs then A buys B a bag of chips. Assume that the game is
played once each day, the players’ tastes do not change from one
day to the next, and they have a fixed positive utility for each of
the prizes and also for money. Unlike the previous situation, this
is a game of incomplete information in which neither player
knows the other’s payoffs.

For expositional simplicity assume first that the players are
myopic, that is, they do not worry about the effect of their actions
on the future course of the game. Imagine that the following
sequence of actions has occurred over the first ten periods.

Period 1 2 3 4 5 6 7 8 9 10 11
A: H T T H H H T H T H ?
B: T H T H T H T H T H ?

The immediate problem for each player is to predict the intention
of the opponent in period 11 and to choose an optimal response.
The opponent’s intention might be to play H for sure, T for sure,
or to randomize with probability p for H and 1 2 p for T. If the
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opponent’s intention is to randomize, then obviously one cannot
predict his realized action, but it does not seem too much to ask
that one predict the approximate probability with which he
intends to play each action. We claim, however, that this is
essentially impossible.

To see why, let’s put ourselves in A’s shoes. The behavior of
B suggests an alternating pattern, perhaps leading us to predict
that B will play T next period. Because we are rational, we will
(given our prediction) play T for sure next period. But if B is a
good predictor, then she must be able to predict that with high
probability we are in fact going to play T next period. This
prediction by B leads her to play H next period, thus falsifying
our original prediction that she is about to play T.

The point is that if either side makes a prediction that leads
them to play H or T for sure, the other side must predict that they
are going to do so with high probability, which means that they
too will choose H or T for sure. But there is no pair of predictions
such that both are approximately correct and the optimal
responses are H or T for sure. It follows that, for both players to
be good predictors of the opponent’s next-period behavior, at
least one of them must be intending to play a mixed strategy next
period, and the other must predict this.

Suppose, for example, that player B intends to play a mixed
strategy in period 11. Because B is rational, she only plays a
mixed strategy if she is exactly indifferent between playing H and
T given her predictions about A. (If there is a slight difference
in payoff between the two actions, strict rationality requires that
the one with higher payoff be chosen exclusively.) Now B’s
predictions about A’s behavior in the 11th period are based on
the observed history of play in the first 10 periods. Let’s say that
the particular history given above leads B to predict that A will
play H with a probability of 0.127. Because B intends to play
mixed, it must be the case that B’s expected utility from playing
H or T is identical given B’s utility function uB for the various
outcomes. In other words, it must be that

.127 uB ~buy cone! 1 .873 uB ~eat chips! 5 .127 uB ~drink coke!

1 .873 uB ~buy shake!.

But there is no reason to think that B’s utilities actually do satisfy
this equation exactly. More precisely, let us suppose that B’s
utility for each outcome could be any real number within a
certain interval, and that B’s actual utility (B’s type) is the result
of a random draw from among these possible values. (The draw
occurs once and for all before the game begins.) Following
Jordan (2), we claim that the probability is zero that the above
equation will be satisfied. The reason is that there is only a finite
number of distinct predictions that B could make at this point in
time, because B’s prediction can only be based on A’s (and B’s)
previous observed behavior together with B’s initial beliefs.
Because this argument holds for every period, the probability is
zero that B will ever be indifferent. From this and the preceding
argument it follows that in any given period, one or both players
must be making a bad prediction. Moreover, they cannot be
playing a Nash equilibrium in any given period (or even close to
a Nash equilibrium), because this would require them to play
mixed strategies, which means that both must be indifferent.

Jordan (2) was the first to employ this kind of argument to
show that myopic players effectively cannot learn mixed equi-
libria no matter what their beliefs are. Moreover, as we have just
seen, the same argument shows that at least one of them cannot
learn to predict the behavior of the other. The limitation of
Jordan’s result is that it assumes players are completely myopic.
Forward-looking behavior allows for a richer repertoire of
learning strategies and more time to detect complex patterns in
the behavior of one’s opponent. Nevertheless, the incompatibil-

ity between rationality and prediction continues to hold even in
this case, as we shall show below.

A second closely related body of work is provided by Nachbar
(6–8). He was the first to argue that there is a fundamental
tension between prediction and rationality in the context of
Bayesian learning even when players are forward-looking. Nach-
bar’s critique was prompted by an earlier paper by Kalai and
Lehrer (4), which laid out conditions under which Bayesian
rational players would in fact be able to learn to predict the
behavior of their opponents. Suppose that each player begins the
game with a prior belief over the possible repeated game
strategies that his opponents might use. Kalai and Lehrer show
that, if these prior beliefs contain a ‘‘grain of truth,’’ that is, they
put positive probability (however small) on the actual repeated
game strategies of the opponents, then players learn to predict
with probability one.

As Nachbar points out, however, the grain-of-truth condition
may be very difficult to satisfy in practice. To illustrate, consider
the preceding example and suppose that the players are perfectly
myopic. Then the unique equilibrium of the repeated game is for
A to play H with some fixed probability p* each period and for
B to play H with some fixed probability q* each period. These
values are not known to the players because p* depends on B’s
payoffs, whereas q* depends on A’s payoffs. Can they be learned
through Bayesian updating of a diffuse prior? Suppose that each
player begins with a belief that the other is playing an i.i.d.
strategy with an unknown parameter (the probability of playing
H), where the beliefs have full support on the interval [0, 1]. In
any given period, the players almost surely will have updated
beliefs that lead them to play H or T with a probability of 1 in
that period, because the expected payoffs from H and T are not
exactly equal. However, their updated beliefs lead them to
predict that their opponent is almost surely going to play a mixed
strategy next period. Thus their predictions almost certainly are
not close to their actual strategies. Furthermore, as the game
proceeds, rationality causes them to play H for sure in some
periods and T for sure in others. Hence their actual strategies are
not i.i.d. and not in the support of their beliefs. More generally,
Nachbar (6–8) argues that in games such as this it is difficult to
identify any plausible family of beliefs such that the players’ best
response strategies are in the support of their beliefs [another
paper in the same general spirit is provided by R. I. Miller and
C. W. Sanchirico (12)].

In this paper we are agnostic about whether or not the players
are Bayesian and what the structure of their priors might be.
Instead we show that no matter how players use the information
revealed by repeated play, they will fail to learn to predict the
opponents’ behavior in some kinds of games.

Before turning to a precise statement of our result, we should
point out that it is prediction by the players that is problematical;
to an observer the average behavior of the players may exhibit
empirical regularities. For example, it could be that the cumu-
lative frequency distribution of play approaches a Nash equilib-
rium of the game. In fact this will be the case for fictitious play
in which each player uses the empirical distribution of the
opponent’s play up through a given period to predict his next-
period behavior and then chooses a best response given that
prediction. In games such as matching pennies, this simple
learning rule induces long run average behavior that converges
to the mixed Nash equilibrium of the game (13, 14). There are
other models in which a player’s average behavior mimics Nash
equilibrium from the observer’s standpoint (15, 16); in fact Nash
himself proposed such an interpretation (17). But this does not
imply that individual players ever play Nash equilibrium strate-
gies or that they learn to predict.

The Learning Model. We now describe our impossibility result in
detail. Consider an n-person game G with finite action space X 5
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P Xi and utility functions ui: X 3 R. We shall assume that the
payoffs take the form ui(x) 5 ui

0(x) 1 vi(x), where the ui
0(x) are

payoffs in a benchmark game G0, and the vi(x) are i.i.d. random
variables drawn from a continuous density n(v), the support of
which is the interval Il 5 [2ly2, ly2]. The parameter l . 0 is
the range of uncertainty in the payoffs. We shall assume that the
distribution of payoffs is common knowledge, but the realized
payoff ui(x) is known only to player i. Errors are drawn once only
before play begins, and the resulting one-shot game (called the
n-perturbation of G0) is played infinitely often.

Each player takes an action once in each time period t 5 1, 2,
3,. . . The outcome in period t is an n-tuple of actions xt [ X,
where xi

t is the action taken by i in period t. A state of the process
at time t is a history of play up to t, that is, a sequence of outcomes
ht 5 (x1, x2, . . . xt). Let h0 represent the null history, Ht the set
of all length-t histories, and H 5 øt Ht the set of all finite
histories, i.e., the set of all states. A realization of the process will
be denoted by h, and the set of realizations (i.e., the set of infinite
histories) will be denoted by H`. Histories are observed publicly,
that is, there is perfect monitoring.

The discounted payoff to player i from a realization h 5 (x1,
x2, . . . xt, . . . ) is

Ui~h! 5 ~1 2 di! O
t 5 1

`

di
t 2 1ui~xt!,

where di is i’s discount factor, 0 # di , 1 (if di 5 0, Ui(h) 5 ui(x1)).
Let Di denote the set of probability distributions over Xi. Let D 5
PjDj denote the product set of mixtures, and let D2i 5 PjÞiDj be
the product set of mixtures by i’s opponents. A behavioral
strategy for player i specifies a conditional probability distribu-
tion over i’s actions in each period conditional on the state in the
previous period. Thus we can represent i’s strategy by a function
qi

t 5 gi(ht21) [ Di, where qi
t(xi) is the probability that i plays xi in

period t given that ht21 is the state in period t 2 1. This is of
course a function of i’s realized utility function ui, but we shall
not write this dependence explicitly.

A prior belief of player i is a probability distribution over all
possible combinations of the opponent’s strategies. We can
decompose any such belief into one-step-ahead forecasts of the
opponent’s behavior conditional on each possible state. Thus, if
ht21 is the state at time t 2 1, i’s forecast about the behavior of
her opponents in period t can be represented by a probability
distribution p2i

t 5 fi(ht21) [ D2i, where p2i
t (x2i) is the probability

that i assigns to the others playing the combination x2i in period
t. The function fi: H3 D2i will be called i’s forecasting function.
Given any vector of forecasting functions f 5 ( f1, f2, . . . fn), one
for each player, there exists a set of prior beliefs such that the fi
describe the one-step-ahead forecasts of players with these
beliefs [see Kalai and Lehrer (4)].

Consider the situation just after the players have been in-
formed privately of their realized payoff functions ui. Because of
the independence of the draws among players, no one knows
anything he did not already know about the others’ payoffs, and
this fact is common knowledge. This has an implication for the
forecasting functions. Namely, at the beginning of each period t,
i knows that j’s information consists solely of the publicly
observed history ht21 and j’s own payoff function uj. Player j’s
behavior cannot be conditioned on information that j does not
have (namely u2j), and player i’s forecast of j’s behavior cannot
be conditioned on information that i does not have (namely, u2i).
Thus i’s forecast [fi(ht21)]j about j’s behavior in each period t does
not depend on the realization of the values uk for every k,
including k 5 i, j. It follows that the functions fi do not depend
on the realized payoff functions ui(z), although they may depend
on n. Another way of saying this is that the beliefs must be

consistent with the players’ a priori knowledge of the information
structure.

Following Jordan (2), we shall say that a learning process is
a pair ( f, g) 5 ( f1, . . . , fn, g1, . . . , gn), where fi: H 3 D2i and
gi: H 3 Di for each player i. Given a realization of the process
h, we shall denote player i’s forecast in period t by p2i

t (h) 5
fi(ht21), and i’s behavioral strategy in period t by qi

t(h) 5 gi(ht21).
The pair ( fi, gi) induces a probability measure on the set of all

realizations H`. Similarly, for every state ht21, fi and gi induce a
conditional probability distribution on all continuations of ht21.
Denote this conditional distribution by mi( fi, gi uht21). We say that
individual i is rational if, for every ht21, i’s conditional strategy
gi(zuht21) optimizes i’s expected utility from time t on, given i’s
conditional forecast fi(zuht21). (This is also known as sequential
rationality.) Specifically, for every alternative choice of strategy
gi9(zuht21),

EUi~h!dmi~fi, giuht21! $EUi~h!dmi~fi, g9iuht21!.

Prediction. Intuitively, player i learns to predict the behavior of his
opponent(s) if i’s forecast of their next-period behavior comes
closer and closer to their actual next-period strategies. This idea
may be formalized as follows. Consider a learning process ( f, g),
and let m(g) denote the probability measure induced on H` by the
strategies g 5 (g1, g2, . . . , gn). We say that player i learns to predict
if the mean square error of i’s next-period predictions goes to
zero over almost all histories of play. In other words, for
m(g)-almost all realizations h

lim
T 3 `

O
t 5 1

T

up2i
t ~h! 2 q2i

t ~h!u2yT 5 0. [1]

Similarly, we shall say that player i never learns to predict if the
subset of histories for which Eq. 1 holds has m-measure zero.
Note that this condition permits players to make bad forecasts
from time to time, provided they do not occur too often.

An Impossibility Theorem. We now demonstrate a class of repeated
games such that, with probability one, some player never learns
to predict his opponent’s behavior, and this holds for all prior
beliefs. Because our result holds for all beliefs, it must hold for
beliefs that are in some sense best possible. A reasonable
candidate for ‘‘best possible beliefs’’ are rational expectations
beliefs. These have the property that, at every point in time, each
player’s prediction of his opponent’s future behavior is condi-
tioned correctly on the posterior distribution of payoff types
revealed by play so far. Jordan (1, 3) shows that these posterior
distributions converge to the set of Nash equilibria of the game
(see also ref. 18). However, this does not imply that the poste-
riors lead to predictions that are close to being correct for a given
opponent. Our result shows, in fact, that these rational expec-
tations predictions are not close to being correct for almost all
opponents.

This still leaves open the possibility that for some combina-
tions of beliefs the players’ strategies converge to Nash equilib-
rium even though their predictions do not. In a repeated game
convergence to equilibrium can be given a variety of interpre-
tations; we shall show that the process fails to converge to
equilibrium in almost any reasonable sense. Let QN be the set of
all one-period strategy tuples q [ D such that q occurs in some
time period in some Nash equilibrium of the repeated game. For
every q [ D let d(q, QN) be the minimum Euclidean distance
between q and the compact set QN. Given a learning process ( f,
g) and a specific history h, if the behavioral strategies come close
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to Nash equilibrium on h then at a minimum we would expect the
following condition to hold,

lim
T 3 `

F O
t 5 1

T

d~qt~h!, QN!2GyT 5 0. [2]

This implies that, for every « . 0, play is within « of some Nash
equilibrium at each point in time except possibly for a sparse
set of times. We shall show that the process fails to come close
to Nash in the sense that Eq. 2 fails to hold for almost all
histories h.

Theorem. Let n be a continuous density on [2ly2, ly2], and let G
be a n-perturbation of a finite, zero-sum, two-person game G0, all
of whose Nash equilibria have full support. Assume that the players
are perfectly rational, have arbitrary discount factors less than unity,
and that each updates his predictions of the opponent’s future
behavior by a learning rule that is based solely on observable
actions. If l is sufficiently small, then for n-almost all payoff
realizations, the probability is 1 that someone never learns to predict
and that play fails to come close to Nash.

We remark that the set of games for which this impossibility
result holds is actually much larger than the one stated in the
theorem. Consider, for example, any two-person game G with
strategy space Y1 3 Y2 such that uYiu $ 2; all Nash equilibria have
full support on Y1 3 Y2, and every action not in Yi is dominated
strictly by some action in Yi. Then the theorem holds for
perturbed versions of this game. Next let us extend G to an
n-person game G* by adjoining n 2 2 players as follows: each
new player has a strictly dominant action, and G* is the
two-person subgame that results when they play these actions. It
follows that for any finite action space X 5 PXi, there exists an
n-person game G* on X such that when the payoffs of G* are
perturbed by small i.i.d. random errors, good prediction fails to
occur with probability one.

Now consider any n-person game G on the finite strategy space
X 5 PXi. Suppose that we perturb the payoffs of G by i.i.d.
random errors drawn from a normal distribution or in fact any
distribution with a continuous density, the support of which is the
whole real line. With positive probability the payoffs of the
realized game will be close to the game G* constructed above.
Thus as a corollary we obtain the following.

Corollary. Let G be any finite n-person game, the payoffs of which
are perturbed once by i.i.d. normally distributed random errors.
Assume that the players are perfectly rational, have arbitrary
discount factors less than unity, and that each updates his predic-
tions of the opponents’ future behavior by a learning rule that is
based solely on observable actions. For almost all payoff realiza-
tions, there is a positive probability that someone never learns to
predict and that play fails to come close to Nash.

Proof of the Theorem. Because the proof is somewhat involved, we
shall explain first why the argument given in the introduction for
myopic players does not extend easily to the general case. One
difficulty is that patient players might interact through condi-
tional strategies that involve no randomization, and these might
be predictable at least some of the time. Eliminating this case
requires a delicate probabilistic argument. The second difficulty
is that even when players randomize and are therefore indiffer-
ent among alternative strategies, this does not imply that the
stage-game payoffs are solutions of a linear equation. Rather,
they are the roots of a nonlinear function, and we must show that
the roots of this function constitute a set of measure zero.

To increase the transparency of the proof, we shall give it for

the game of matching pennies. It generalizes readily to any finite
zero-sum, two-person game, the stage-game Nash equilibria of
which are all strictly interior in the space of mixed strategies. Fix
a continuous density n, the support of which is [2ly2, ly2]. To
be concrete, we may think of n as the uniform distribution. The
perturbed game has the payoff matrix

1
2

1 2
1 1 v11, 21 1 v911 21 1 v12, 1 1 v912

21 1 v21, 1 1 v921 1 1 v22, 21 1 v922,

where vij, v9ij are i.i.d. random variables distributed according to n.
Fix two rational players, 1 and 2, with discount factors 0 # d1

# d2 , 1. Let their beliefs be f1, f2, and let their strategies be
g1(zuA), g2(zuB), where A and B are the realized values of the
players’ payoff matrices. The functions f1, f2, g1, g2 will be fixed
throughout the proof. All probability statements will be condi-
tional on them without writing this dependence explicitly. Let
H(A, B) be the set of all histories h such that good prediction (Eq.
1) holds when the realized payoffs are (A, B). Let P be the set
of pairs (A, B) such that good prediction holds with positive
probability, that is, m[H(A, B)] . 0. First we shall show that
n(P) 5 0, that is, there are almost no payoff realizations (A, B)
such that both players learn to predict with positive probability.
In the second part of the proof we shall show that for almost all
(A, B) the process fails to come close to Nash.

Lemma 1. For every positive integer m, every 0 , «9 # « , 1, and
every (A, B) [ P, there exists a time T, possibly depending on m,
«, «9, A, B, such that with m-probability at least 1 2 «9, each player
forecasts the other’s next-period strategy within « in each of the
periods T 1 1, . . . , T 1 m.

Proof. Let (A, B) [ P and suppose there were no such time T.
Then for every time T the m-probability would be greater than «9
. 0 that at least one player misforecasts the opponent’s behavior
by more than « in one or more of the periods T 1 1, . . . , T 1
m. This would imply that Eq. 1 is violated for almost all histories,
that is, m[H(A, B)] 5 0, which contradicts our assumption that
(A, B) [ P.

Lemma 2. For each (A, B) [ P there exists a time T and a history
hT, possibly depending on A, B, such that conditional on hT each
player’s expected future payoffs, discounted to T 1 1, are bounded
above by cl for some positive number c that depends only on the
discount rates.

Proof. Given a small l . 0, choose m $ 1 such that d2
m # l and

0 , «9 # « # lym4mem. As guaranteed by Lemma 1, let hT be
a history such that the m-probability is at least 1 2 «9 that each
player forecasts the other’s next-period strategy within « in each
of the periods T 1 1, . . . , T 1 m. Let a*T11 and b*T11 be the
payoffs that players 1 and 2 expect to get from period T 1 1 on,
discounted to period T 1 1. We shall exhibit a positive constant
c, depending only on the discount factors, such that a*T11, b*T11 #
cl. Note first that each player has the option of playing 50–50 in
each period from T 1 1 on, which has an expected discounted
payoff at least 2ly2. Because each player’s strategy is optimal,
it follows that a*T11, b*T11 $ 2ly2.

For each j, 1 # j # m, let aT1j be player 1’s expected
undiscounted payoff in period T 1 j as forecast by player 1 at the
end of period T. Define bT1j similarly for player 2. Let Hj, hT be
the set of all continuations of hT to time T 1 j. Let f1(hT1j)
denote player 1’s probability assessment of hT1j [ Hj, hT and
similarly define f2(hT1j) for player 2. The true probability is
m0(hT1j), where m0 is m conditional on hT. The set of continu-
ations on which someone makes a bad forecast have m0-
probability at most «9. On the remaining good continuations,
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each player errs by at most « in forecasting his opponent’s
stage-game behavior in each of j stages. Hence for every good
continuation hT1j, ufi(hT1j) 2 m0(hT1j)u # (1 1 «)j 2 1 # (j«)ej«.

Each player’s forecasted payoff in period T 1 j cannot differ
from the actual payoff in period T 1 j by more than 2 1 l no
matter how bad the forecast is. There are 4j continuations to
period T 1 j including good and bad. Over all of the good ones,
player 1’s forecasted expected payoff differs from his actual
expected payoff by at most 4j(j«)ej« (2 1 l). Over all of the bad
ones the two differ by at most «9(2 1 l). Thus the difference
between 1’s forecasted expected payoff, aT1j, and his actual
expected payoff, a# T1j, is at most («9 1 4j(j«)ej«)(2 1 l). By
assumption, «9 # « # lym4mem and j # m, so «9 1 4j(j«)ej« # « 1
4m(m«)em« # 2l. Thus uaT1j 2 a# T1ju # 2l(2 1 l) # 6l. Similarly
ubT1j 2 b# T1ju # 6l. The actual payoffs satisfy ua# T1j1 b# T1ju # l,
from which we conclude that uaT1j 1 bT1ju # 13l for 1 # j # m.

For each j, 1 # j # m, let a*T 1 j 5 (1 2 d1)(aT1j 1 d1aT1j11
1 d1

2 aT1j12 1 . . . ) be player 1’s expected payoff from period
T 1 j on, discounted to period T 1 j, as forecast at the end of
period T. Similarly define b*T1j 5 (1 2 d2)(bT1j 1 d2bT1j11 1
d2

2 bT1j12 1. . . ). We claim that a*T1j, b*T1j $ 2ly2 for every j.
If not, some player could switch his strategy to a 50–50 random
mixture from period T 1 j on, thus increasing his expected payoff
from that time on, which would contradict sequential rationality.

Beyond period T 1 m, the forecasts may no longer be good
within «. However, neither player expects to get more than 1 1
ly2 in any period, thus the sum of expected payoffs beyond
period T 1 m, discounted to period T 1 1, cannot be more than
(1 2 d2)d2

m(1 1 ly2). By choice of m, d2
m # l, thus the previous

expression is at most 2l when l is small. Putting this fact together
with uaT1j 1 bT1ju # 13l, it follows that

b*T11 # ~1 2 d2!O
j51

m

d 2
j21bT1j 1 2l

# ~1 2 d 2!O
j51

m

d 2
j 2 1~13l 2 aT1j! 1 2l

# 15l 2 ~1 2 d2!O
j51

m

d 2
j21aT1j. [3]

The term (j51
m d 2

j21 aT1j is similar in form to a*T11 except that the
wrong discount factor is being used, and the sum is truncated.
Nevertheless, we claim that if a*T11 is small, then so is the term
in question. To see this, consider the identity a*T1j 5 d1a*T1j11 1
(1 2 d1)aT1j, which holds for all j. From this we obtain

O
j51

m

d 2
j21a*T1j 5 d1O

j51

m

d 2
j21a*T1j 1 1 1 ~1 2 d1!O

j51

m

d 2
j21aT1j,

and after rearranging terms,

O
j51

m

d 2
j21aT1j 5 @a*T11 1 ~d2 2 d1! O

j51

m21

d 2
j21a*T1j11

2 d1d2
m21a*T1m11#y~1 2 d1!. [4]

All of the terms a*T12, . . . a*T1m are at least 2ly2, the term
a*T1m11 is at most 1 1 ly2, and d1d2

m 2 1 # d2
m # l. Thus, the

right-hand side of Eq. 4 is bounded below by a*T11y(1 2 d1) 2
c9l, where c9 . 0 depends only on the discount factors. The
left-hand side of Eq. 4 is the summation on the right-hand side

of 3. Substituting this expression into 3 we see that b*T11 1
[(1 2 d2)y(1 2 d1)]a*T11 # 15l 1 (1 2 d2)c9l. Because a*T11, b*T11
$ 2 ly2, we conclude that both a*T11 and b*T11 are bounded
above by cl for some c that depends only on the discount factors
d1 and d2. This concludes the proof of Lemma 2.

Lemma 3. For every positive integer m and all sufficiently small l .
0, if (A, B) [ P, then there exists a history hT such that, conditional
on hT at time T, both players randomize in each of the periods T 1
1, . . . , T 1 m.

Proof. As in the proof of Lemma 2, choose m $ 1 such that d2
m #

l and let 0 , « # lym4mem. Assume in addition that «9 5 «4m. Now
apply Lemma 1 with 2m instead of m: there is a time T such that,
with a probability of at least 1 2 «9, the next-period forecasts are
within « of being correct for the periods T 1 1, . . . , T 1 2m.

For each hT1j, 0 # j # 2m21, say that hT1j is good if both
players’ next-period forecasts are within « of being correct;
otherwise hT1j is bad. Say that hT1j is g-good if it is good and,
conditional on hT1j occurring in period T 1 j, the probability is
at most g that someone makes a bad next-period forecast in any
continuation of hT1j through period T 1 2m 2 1.

By choice of T there is at least one state, hT, that has positive
probability under the strategies and is «9-good. Lemma 2 implies
that the expected discounted payoffs from T 1 1 on are bounded
above by cl. We claim this implies that both players randomize
in period T 1 1, and in fact each of them chooses each action with
probability at least «. Suppose, to the contrary, that some player
(say player 1) chooses action 1 with probability less than «.
Because hT is good, player 2 forecasts that 1 will play action 2
with probability at least 1 2 2«. But then player 2 could obtain
a higher expected payoff by mismatching (playing action 1) in
period T 1 1 and randomizing fifty-fifty in every period
thereafter. (The expected payoff from this strategy is at least
[(1 2 d2)(1 2 4«) 2 ly2], which is greater than cl for all
sufficiently small l and « # l.) This contradiction shows that
player 1 chooses each action in period T 1 1 with probability at
least «, and the same holds for player 2.

It follows that each of the four possible continuations of hT to
period T 1 1 has probability at least «2. Because «2 . «9 and hT is
«9-good, none of these four continuations can be bad, and in fact
each of them must be at least («9y«2)-good. Now apply Lemma 2
again (redefining «9 to be «4my«2) and conclude that, for every
continuation of hT to some hT12, the conditional expected payoffs
from period T 1 2 forward are bounded above by cl. As before, we
conclude that both players randomize in period T 1 2, each putting
at least « on each action. Continuing in this manner, we deduce that
both players randomize in every continuation of hT to period T 1
m. This concludes the proof of Lemma 3.

The gist of the proof thus far is that, if the payoff realizations (A,
B) lead to good predictions with m-positive probability, then for
every sufficiently large positive integer m, there exists a state hT that
induces randomization by both players in each of the next m
periods. We now show that this implies that the payoffs are zeroes
of a function, the set of zeroes of which has n-measure zero. This
will show that good prediction occurs with n-measure zero.

Let hT be any state, and let m be a positive integer. Suppose
that player 1 plays action 1 in each of the periods T 1 1 to T 1
m, after which he plays an optimal strategy given his beliefs. We
can write his expected utility, discounted to time T 1 1, as a
function of his payoff matrix A as follows:

U1~A! 5 u1a11 1 ~1 2 d1
m 2 u1!a12 1 d1

mR1~A!.

Here u1 comes from player 2’s randomization between actions 1
and 2, and the remainder term R1(A) is convex and bounded. In
fact, uR1(A)u # (1 2 d1

m)(ua11u 1 ua12u 1 ua21u 1 ua22u). Similarly
define U2(A) to be player 1’s expected utility from playing action
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2 for m periods and an optimal strategy thereafter. This can be
written analogously to U1(A) with a remainder function R2(A)
that satisfies the same bound as R1(A). All of these functions
depend of course on hT.

It will be convenient to consider a one-dimensional subspace
of the payoff matrices A. Namely, for every four real numbers w,
x, y, and z, let cx, y, z(w) be the 2 3 2 matrix with entries a11 5
w 1 x, a12 5 w 2 x, a21 5 y, and a22 5 z. Given x, y, and z, define
the following function: Fx, y, z(w) 5 U1(cx, y, z(w)) 2 U2(cx, y, z(w)).
Abbreviating cx, y, z(w) by c(w), we can write this in the form

Fx, y, z~w! 5 Kx, y, z 1 ~1 2 d1
m!w 1 d1

m$R1~c~w!! 2 R2~c~w!!%,

where Kx, y, z is a linear function of x, y, z and does not depend on
w. The functions Ri(c(w)) are convex and bounded by the same
bound as before. By choosing m to be sufficiently large, we can
ensure that Fx, y, z(w) is strictly monotone increasing in w. It
follows that for any triple x, y, z, there is at most one value of w
such that Fx, y, z(w) 5 0. Because x, y, z are drawn from the
continuous density n, we have P[{w: Fx, y, z(w) 5 0ux, y, z)}] 5 0.
By the smoothing theorem (i.e., the law of iterated expectations),
it follows that P[{(w, x, y, z) [ R4: Fx, y, z(w) 5 0}] 5 0.

To state this in terms of the matrix A, let G(A) 5 Fx, y, z(a11 1
a12)y2) where x 5 (a11 2 a12)y2, y 5 a21, and z 5 a22. The preceding
implies that P[{A: G(A) 5 0}] 5 0. Recalling that F (and thus G)
are conditional on a particular history hT, we can write this as
P[{A: G(A) 5 0}uhT] 5 0. Hence, ShT P[{A: G(A) 5 0}u hT] P(hT) 5
0. In other words, player 1 is only indifferent between actions 1 and
2 on a set of payoff matrices A having n-measure zero.

Suppose now that (A, B) is a pair for which good prediction holds.
Let hT be a history as guaranteed by Lemma 3, where m is
sufficiently large that F is strictly monotone increasing in w. By
Lemma 3, player 1 randomizes in each of the periods T 1 1, . . . , T
1 m. Hence he is indifferent between playing action 1 or action 2
in each of these periods, an event that has n-measure zero. We
conclude that there are n-almost no payoff realizations (A, B) such
that both players learn to predict with positive probability. This
establishes the first claim of the theorem. We also note for future
reference that we have actually established the following fact.

Lemma 4. If m is large enough and l is small enough, then the
n-probability is zero that there exists a state hT such that, conditional
on hT at time T, both players randomize in each of the periods
T 1 1, . . . , T 1 m.

It remains to be shown that, for n-almost all (A, B), play fails to
come close to the set of Nash equilibria in the sense that condition
2 fails to hold for almost all histories h. The first step is to show that
all Nash equilibria of the repeated game are mixed sufficiently in
each time period provided that l is sufficiently small.

Lemma 5. There exists « . 0 and l9 . 0 such that whenever 0 , l #
l9, every Nash equilibrium of the repeated game puts probability at
least 2« on each action in every time period.

The proof is similar to that of Lemma 2; in outline it runs as
follows. In equilibrium, each player’s expected discounted payoff

must be at least 2ly2, because at least this much is guaranteed
by randomizing fifty-fifty in every period. Because the actual
payoffs in each period sum to l or less, each player’s expected
discounted payoff can be bounded from above by kl, where k is
a positive constant. If some player were to play an action with less
than probability 2« in some period t, the opponent can take a
pure action with expected payoff at least (1 2 4« 2 ly2) in period
t and get at least 2ly2 in every period thereafter. When « and
l are sufficiently small, the expected discounted payoff from
such a deviation exceeds kl, a contradiction.

Fix l [ (0, l9]. For each pair of payoff matrices (A, B), let
N(A, B) be the set of all histories h such that condition 2 holds,
i.e., such that play comes close to Nash in a weak sense. We are
going to show that there are m-almost no such histories for
n-almost all (A, B). This is a consequence of the following.

Lemma 6. Let (A, B) be a pair of payoff matrices such that 2 holds
with m-positive probability. Then for every positive integer m and
every sufficiently small l, there exists a state hT such that, condi-
tional on hT, each player randomizes in each of the periods T 1
1,. . . , T 1 m.

By choosing m large enough, it follows from Lemma 4 that
there are n-almost no payoff realizations (A, B) with this
property. In other words, for n-almost all payoff realizations play
fails to come close to Nash. Thus, once we establish Lemma 6,
we will have completed the proof of the theorem.

Proof of Lemma 6. Fix a pair (A, B) such that condition 2 holds with
m-positive probability. Choose « and l such that every element
of QN puts probability at least 2« on each action in each time
period as guaranteed by Lemma 5. Let m be a positive integer,
and let «9 5 «2m. Let qt11(ht) denote the strategies in period
t 1 1 given the history ht to period t. There exists a time T such
that with m-probability at least 1 2 «9, d(qt11(ht), QN) # « for
every ht in the interval T # t # T 1 m 2 1. (If this were not so,
condition 2 would hold with m-probability zero, contrary to our
assumption.)

Say that a history ht11 is good if d(qt11(ht), QN) # «. It is very
good if it is good and all of its successors for the next m periods
are good. If a history is good then each action is played in the next
period with probability at least «. Hence every continuation of
a good history occurs with probability at least «2. If no history
at time T is very good, then the m-probability of a bad history
occurring in the interval T, T 1 1, . . . , T 1 m 2 1 is at least «2m22

. «9, contrary to our assumption. Hence there exists hT such that
d(qt11(ht), QN) # « for every continuation of hT in the interval
T # t # T 1 m 2 1, and hence both players randomize for m
periods in succession. By Lemma 4 this happens with n-proba-
bility zero. This concludes the proof of Lemma 6, and thereby the
proof of the theorem.
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